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This paper is part of a survey report on nonlinear elasticity theory to the Third All-Union 
Congress on Theoretical and Applied Mechanics in January 1968. The paper starts with 

an exposition (Sects. l- 3) of deformation geometry in which representations describing 
its tensors in terms of their (co- or contravariant) components are avoided. Such a 

method of describing the phenomena in terms of the quantities (vectors, tensors) giving 
them directly is conserved throughout the paper. A nonsymmetric Piola tensor is emr 
ployed to give the state of stress (Sect. 4), and this permits referral of the statics equa- 
tion and the boundary conditions to the geometry of the initial state of the medium. 

The specific potential strain energy (Sect. 5) is represented by a function of the invari- 
ants expressed in terms of the principal relative elongations ; moreover, it is given in the 
simplest form which reduces to the classical form of linear elasticity theory upon iden- 

tification of the relative elonga.tions with the diagonal components of the linear strain 
tensor. John [l] called a material described by such an assignment of the specific poten- 
tial strain energy “harmonic” since the solution of its plane problems reduces to a (non- 
linear) boundary value problem of harmonic function theory. We utilize the designation 
“semilinear” below ; this can be justified by the fact that the equllibriqm differential 
equations in displacements are linear for such a material in an extensive class of prob- 
lems, and the nonlinearity is disclosed in the boundary condition. 

The solution of problems for a semilinear material is elementary for the simplest 
equilibrium states characterized by symmetry of the gradient tensors (Sect. 6). The 
problem of calculating “second order effects” is examined in Sect. 7. a derivation is 

given of the “second approximation” equation, an example of rod torsion (the evaluation 
of the elongation under twist) is investigated. Differential equations of equilibrium mode 
bifurcation are presented in Sect. 8, and are simplified in Sect. 9 under the assumption 
that the original equilibrium mode will be “simplest” in the mentioned sense. Sensenig 

[Z] gave these equations in another mode of writing. In the particular case when the 
original equilibrium mode is a homogeneous strain (Sect. 10). we arrive at a system of 
equations obtained from other (not entirely correct) reasoning of Southwell [3] ; a more 
general representation is given of the solution of this system which is utilized in the 
problem of bifurcation of the equilibrium of a compressed rod in Sects. 11 and 12, The 
bifurcation of the equilibrium of a hollow sphere under radially symmetric strain is con- 
sidered in Sect. 13. 

Notation. Material coordinates of points of the medium are denoted by dt their 
Cartesian coordinates in the initial state of the medium (1. is the volume bounded by a 

surface o) by (I#, in the final state (V the volume, and 0 the surface) by I, = % -I- “I; 
under the transformation F 4 V the radius vector r = i,o, becomes R = ip, = r + Us 

A vector basis r, = &/d@ is introduced in the +volume, and the matrix of the cova- 

riant components &k = r,*rl; of the metric tensor g is defined, where g = 1 gsr I is 
its determinant. Contravariant components of this tensor are given by the inverse matrix 
u g*” 11 so that g’k ,Q = g,‘ is the Kronecker symbol. The reciprocal vector basis in the 
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-volume is formed by the triple of vectors 

I‘ = g@‘rr ) rs. tlr = g,‘. rS. rk ‘Sk 

The same notation, but in capital letters (R,. IV, C,k = R, .R&, C = 1 C,t 1, etc. ) is 

used in the V-volume. 
The unit (metric) tensor E = i,i, is represented in the vector bases of the u and V- 

volumes as E = g - rskr,rl; = nlrf f = rsr, = r,# 
E = G = C”R& = &RsRL =R’R,=R,R’ 

Operations in the bases of the V-volume are noted by a prime. The nabla operators in 
the o and V-volumes are represented, respectively, by the symbolic vectors 

The operation of transposition of a second-rank tensor is indicated by the index f. 
The density of the medium in the u and V volumes is denoted by ~0. p and a volume 
element by dra, dr, respectively ; according to the law of mass conservation 9, d% =@T. 

1. Grrdfenta, S trrin meraurementr. Under the transformation v + V 

& =_rJq” =eIdr1=eds+dR=R,dq’=e’IdRl=e’dS 

and taking into account that df - P.dr = RS.dR, we have 

dR = R,rs.dr = dr.r’R, = VIP-dr = dr.VR 
(W 

dr = r,R’.dR = dR-R’r, = Vr’.dR = dR.Vr 

where the tensor-gradients and the transposed gradients 

VR = r’R#, Vr = R’r,, VRr = R‘r”, Vr’ = rsRs 

have been introduced. 
(i-2) 

These are mutually inverse tensors 

VR*Vr = E, VR’-Vr’= E 
Returning to (1.1) we have 

(I -3) 

e*dS = e.VRds = VR’+ds, 
so that 

eh = e’sVdS = Vr’.e’dS (1.4) 

d,!P = e.VR-VRfals2 = e-Gx-wls2, dP= e’.Vr.Vr’.e’d~ =e’.gX.e’dF (1.5) 

The measures of the strain 

G* = VR-VR’ = G,hflr’, gx = Vbv’r’= g,kR’Rk (1.6) 

have been introduced into the consideration_ 

They are here defined by their covariant components in the vector bases of the o and 
V-volumes, which equal the covariant components of the unit tensor (the metric tensors 

G, g) in the bases of the V-and P-volumes. The inverse tensors are defined by the equa- 
lities Gx-‘=(VR.VRr)-‘=Vrr*Vr=CJi;r~ 

(i-7) 
g x-1 = (P’r-V’r’)-l= VR’.V. = gkR,RI, 

According to (1.5), (1.4) we have 
JS = ds (e.Gx.ef’n, ds = dS (e@.ef/* 
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Defining the teaaor Gxhy giving its principal values C, and the orthogonal trihedron 
of the principal directions e,,we have 

(1.9) 

and by means of (1.8) we find the expressions of the principal relative elongations iI,, 
as well as the unit vectorsck’ into which the e transform under the transformation 0 * Y 

ds,--dsk 

6k= &k 
= p&l, e+f*_* (LiO) 

and it is easy to verify that the trihedron %‘is orthogonal. This is the trihedron of the 
principal directions of the tensors g-, g”- Indeed, we have according to (1.7)-( 1.10) 

Thus 

and it is thereby shown that the principal values of the pairs of tensors G”, g*-r and Gx4, 
gx are equal ; however, this follows from the equality of the eigenvalues of the matrices 

AB and 3A (see ( 1.6), ( 1.7) ). 
The transformation o + 2’ is therefore connected with the rotation of the trihedron 

+ 4 e,‘; under the inverse malformation eQ’ -, e, and according to (1.81, (1.11,) 

tS = y’&**vr = j@&WQ, (1.12) 

But according to (1.10) we also have 

so that formulas inverse to (1.10) can be written thus 

(1 .i3) 

0. Rotrtton tenlOF1. The tensors 

A = xe,ei, A’= xe,*t* iw 
L 8 

are introduced so that 

A*A’ = 2 Gt,‘-ei_‘tk =f: xes, = E, AT = A” (2.21 

The tensor inverse to the’*tanspose is a-ro:ation tensor ; it rotates the trihedron Q, into 

e, QQ ‘=Q,.ArAQ.Q_ &. AQ = A.e; (2.3) 

Returning to (1.10) and introducing the tensors 

cX’l* = c, Ifs-.&#* 
‘ 

(2.4) 

the rotation tensors can be represented as 

A=xe,e**= 11 
e,e, .QR = Gxf-%) .QR, 

l ?cs 
A= = ~‘.cx’A’3 

‘ 
A _ (A’ )-l= &%. vr*, A’ = A-x = v”r.Gmi* 

Representations of the gradients as 
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~=G%A, VR’=A’.&%; vr = A’.G-‘a , VI’ = (f(“:d .A (23) 

will be a consequence of these formulas. 
The relationships 

Ar.C”.A = g*-*, G== A.g-.A’; g==A’.G-.A, G- = A.gx*AV (2.7) 

are also verified directly. 

8. Directed &to&. Under the transformation e 4Y 

Moreover, considering the elementary parallelepiped with edges 8% directed along the 
principal axes Q of the tensor p,we have according to (1.10) 

dt, = 6s,&&, + dz = 
Thus 

lm%ab8+,= l@zGdr. 

drldrO= l@E=?fGGG (3.1) 

In the elementary tetrahedron OAIA,A, with edges Od, = e&k directed along the 
same axes, the normal vector ndo Of the area AlAda directed out of the tetrahedron is 

Under the transformation o + V, this vector is represented as (see (3. l), (1.10)) 

We then arrive at the relationship used repeatedly later (see (1.7). (1.3)) 

N d0 =~VR’.G-.ndo= WgVr-ndo = J6?+Vr’do (3.2) 

We thence also have 

(3.3) 

4. S tr b o to na or. The symmetric second-rank tensor T = Tr given in the volume 
V is a stress tensor if its product by the vector NdO of the directed area determines the 
force FdO acting on this area. 

According to this definition. we have by referring to (3.2) 

FdO = N.TdO = ~~.Vr’.Tdo (4.1) 

and this relationship indicates the expediency of introducing a nonsymmetric tensor D , 
the Piola stress tensor (1831) 

D = )rCTgVr’.T. Dr = )/qgT=Vr (4.2) 
Thus 

FdO = II. Ddo, F ~g(n.GX-%)“‘=n.D (4.3) 

Referring to (2.6), we have 

D.A’= ~&‘~*).A.T.A~, A.Df= ~~g_A.T.Ar.GX(df~) (4.4) 

It is known that the tensors and gx(in an isotropic medium) are coaxial (q’ is the 
trihedron of their principal directions) ; hence, the “rotated stress tensor” A l T .A’ is co- 
axial with Cx, which means that the right sides of (4.4) are equal : the symmetry of the 
tensor D *A* hence follows 
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D *AT =: A .D’ = (D .A’)? 

The condition for the principal vector of the forces acting on a volume V, bounded by 
the surface Oeseparated arbitrarily out of the volume 1’ into which the r,-volume (boun- 

ded by the surface ot) is transformed by t’ + V , to vanish is written as 

~~~~*+ ~$~K~*=$~~.~~o +~~~a~,=0 

a* 
We arrive at the nec&sary equilibrium condition 

** 

sss 
(f7. D-l-p&) dr,-0. or V=D +P,K=O (4.5) 

c* 

where K is the mass force vector. The condition for the principal moment of the forces 
MO, pK to vanish finally reduces to the requirement that the tensor T be symmetric. 

6, Egurtion of ttam, Referring to (2.5X (2-t;). we represent (4.4) as 

D-A’= JfGxVr*.T.Vr.G=h (5.f) 

It is moreover known that the variation in specific potential strain energy of an elastic 
solid is represented as the trace, the semiproduct of the stress energy tensor Q = V’tT* 

*T*V’t and the tensor #Y 
6tt’= ‘is ~G~Vr’.T.Vr. +CX (5.2) 

Hence, it is expressed in terms of the Piola tensor as 

SII’ - ‘,/.I) .A7.Gx(-“~) - _ . .a” = D.AZ. .I/&“~-“~) .&GX 
or 

611’ zz D.Ar. .6GX”’ (5.3) 

This energy is later considered as a function of three invariants of the state of strain 

fk = &rk f l)*k + Bak (k=i, 2,.3) (5.4) 

where 8, are the principal relative elongations (see (1.10) ); We obtain 

PI -_ I, (Gc”‘/+3, Sz = ()/G - ty _t ( J@ - I)* f ( fl-- 1p = I, (GX)-2fr (cc”“*)+3 

.Qa=(l/c7--i)st(~/2;1-- f )’ f ( u’i-i; - i js = Zr (G”“*) - 31, (Gx) + 31s (G”“*) - 3 

where 1, (Q) is the first invariant of the tensor Q. We hence find 

We now represent the symmetric tensor D .A’ by the quadratic form of the tensor G=f* 

D.AT = oE + bcxri* + cGx 

The scalar multipliers are here functions of the invariants ski we have 

E* .&X1” =I I; (~G”“+ 61, (G=‘*)] 

c X%. .@“‘= I* (GX”‘.&‘!‘) = ‘/#a (GX) 

GX. .&GM;““’ = 1I (Gx .Gl’lh) = ‘/$Za (G”“) 

and according to (5.3). (5.5). (2.6) we arrive at the equation of state 

D= %-2g+3;i;;- 
( 

[c?W 

1 ( 

aw atv 

) 

atv 
A42 =--3x vR+3~Cmfr-vD @-6j 

which connects the stress with quantities defined by deformations of the *volume into 
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the V-volume. John proposed the expression of the specific potential energy as 

1Y L= ‘/* t,= + )u, (5.71 

which agrees outwardly with the way it is given in linear elasticity theory when ~1, a~ 
are the first invariants of the linear strain tensor a and its square. A material subject to 
this law is called by John [l] “harmonic” material. Here it is called “semilinear”. 
According to the above D=(hr,-7+1)A+21rVR (5.3) 

and substituted into (4.5) results in an analog to the “equilibrium equations in displace- 
ments” &*z - 2~) V. A f LA’.V+ + 2pvR -+ p& = 0 (5.91 

Upon assigning the surface forces F .the boundary condition (4.3) is written as 

Go - =(kl-2&l)L)II.Ai2iLrt+7R (5.10) 

Written thus it presumes knowledge of the shape of the body boundary (the vector n) 
in the initial state, and the equilibrium equations (5.8) are referred to the vector basis 

of the same state. This is the advantage of using the Piola tensor. To apply the equation 

of state (5.6), or particularly (5.7), the expressions of the principal values and principal 
directions of the tensor C* by means of assigning the point transformation v 4 V must be 
known. 

It should here be recalled that the process of solving nonlinear elasticity theory prob- 
lems reduces, as a rule, to assigning the point transformation v 4 I( and then seeking the 
distribution of the surface forces assuring maintenance of this strain state of the solid. 

In all cases which result without exception in closed solutions, the ~ansformation is given 
in simplest form when rotation of the principal axes is either absent (A = E) or retains 
a constant value over the whole solid (A is a constant tensor). Illustrations are : axisym- 
metric strain of a circular cylinder, radially symmetric strain of the sphere, triaxial uni- 

form tension (A = E), affine transformation, and in particular, simple shear strain (A is a 
constant tensor). It must be added that closed solutions are usually obtained successfully 

only for an incompressible Mooney material. 
Under the listed assumptions, the differential equations for a “harmonic” material turn 

out to be linear, and the nonlinearity of the problem is produced by the boundary condi- 

tiOIlS. 

6, Coarsrvrtlon of principal directions. This will hold if the tensor- 
gradients are symmetric VR = VR’, VT = Vr’ (6-i) 

Then according to (1.6), (2.6). (2.1) 

VR = VRf = c”f*, A=E, e, = e,’ (6.2) 

For example, the vectors e, (e,‘) coincide with the unit basis vectors of an orthogonal 
(cylindrical, spherical) coordinate system in the axisymmetric strain of a circular cylin- 
der and radially symmetric strain of a sphere. We now have 

Sl = I1 (G”‘S -3==Z1(VR)--3=d=V.u 

and Eqs. (5.8),(5.91 are reDresented as 

(L f 2p) vu + p@K = 0, linV*u j 2pn-Vu = F g (6.31 

since Vu L= VuT, Vfu = VV *u according to (6.1). Under such conditions these equa- 
tions are the simplest particular form of the elasticity theory equations in displacements; 
only the right side of the boundary condition is nonlinear. In the absence of mass forces 
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o is a harmonic vector. An illustration is the vector 

u=C,Ri +=CsR- C*+= (Cd+$)eR (6.4) 

governing the radially symmetric strain, in which the surface of any sphere of radius R 

becomes a sphere of radius f (R) = (Cs + i) R + C,/@ t&5) 

This strain is realizable under the effect of uniformly distributed pressures ps, po on 

the inner (R = Rr) and outer (R = &) surfaces of the sphere 

The constants Cs, C, are determined by means of the boundary conditions (6.3). We 

have 
V~I=CIE+C,(+-~$), V-U =3C1 w3) 

and moreovzR js (%) 

-=(3L+2~Wr~Ct. 
%’ 

For PI = 0, po = p for example (external pressure) 

(‘3.1) 
and Cr is the root of this quadratic equation (greater than - 1). 

7. Sacond order effect,. The measure of the strain (l.6) is represented as 

C“= VR.VR’ = (E $ Vu).(E + Vu3 = E + 2.e + vu.-’ 

where e is the linear strain tensor, and the tensors Vu, Vu’ are representable by their 
partitions into symmetric(e) and skew-symmetric (0) parts 

e = I/X (Vu + Vu’). vp=e--P, Au’=e+P 

where the tensor Q can be expressed in terms of the linear rotation vector a 

Q=Ex~=axE, (D =‘/,V x u 
Hence 

Gx = E + 2c + ea - V + e-P - 9-e 

and moreover, by retaining just the component of second degree in derivatives of the 

vector 0 G x’lr = E + e- */r(Q*- e.P + i&U) 

,$t-%’ =E-e+e*+*/l(SP-E.e+Q~e) 

Hence, to the same accuracy as in (2.5). we have 
r,=I(c”‘:1)-33=~(a)-s/s(n..n-e..n;a..e)=d+0.(D (7-i) 

~=c’(-‘*).~R~CX(~~~).(E+e-~)=E-~~+/~(~*+U.~+~~U) (7.2) 

and, according to (5.6). we arrive at the following representation of the Piola tensor 

D = ?.OE + 2pe - (l~E+~e).~+(~++)rn.~E-~~o+~(~~O-~~’e) 

or otherwise 
D = T’ (u) - T’ (u) x o + T’ (3 (7.3) 

Here T’ (u) is the stress tensor of linear elasticity theory, evaluated by means of the 
vector u according to Hooke’s law, T+ (u) is an additional symmetric tensor 

To (u) = i&E + 2pe, T’(u) = (1, + p) woE - JIW + 
+ p (e-Q-Q-r) = i*mE -pG + pVu*Vu’ (7.4) 

The skew-symmetric part of the tensor D is represented by the tensor - T* (u) x O. 



Theory of elasticity for a semillnear materlal 1075 

The equilibrium equations in the volume and on the surface are now written accord- 

ing to t4* 3)1 t4* 5, as v .To (u) + o x v .T’ (u) -_IT*(u).V]xo+V.T’(u)=O (7.5) 

F z = n-T* (u) + Q) x [n-T* (u)] + n.T’(u) (7.6) 

(volume forces are assumed absent). 
Now assuming II = v + W, we determine the vector v as the solution of the linear 

problem 
V.T’(v)=O, 

d0 
e.T’(v) = F do = F’ (73 

Here F0 is the surface force referred to unit area of the surface o bounding the volume 
u. . The problem has a solution since the external forces are assumed statically equiva- 

lent to zero in the sequence of equilibrium states in the transition from the volume I 

to the volume Y 

s,s ss 
FdO= F’do=O, 

is 
RxFdO= 

“0 
ss 

rxF’do=O (7.0 
0 0 

The vector w defining the desired “second order effect”, is given, according to (7.5). 

(7.6). by the solution of the problem of linear theory 

V-T’ (w) + k=O. n-T* (w) = f (7.9) 

with the “volume and surface forces” 

k=-[T’(v).V]xw+V*T (v), f=-axFFO--*T’(v) (7.10) 

where Eqs. (7.7) are taken into account. 
The problem has a solution if the principal vector and principal moment are zero 

~~fdo+~~~kdr.=O,&xfdo+&xkdro=O (7.11) 

0 I) 0 v 

Compliance with the first condition is easily verified. This follows from the identities 
already utilized earlier 

ox (n.T’)= - m(T’ x a), V~(T”x~)=--coxV~TO+(To~V)x~ (7.12) 

which are valid for the symmetric tensor To. Hence, referring to (7.7). (7.10). we have 

&do = jss IV-U-” xo)-V.T’]dro= 
sss 

[(T.-V) x cu-_V.T’Jdro=- 
sss 

kdr, 

0 0 D 0 

4. e. d. The situation with the second condition in (7.11) is different. It is here necessary 
to refer to the relationship 

1 

SS rxn.Qdo=- 
sss 

II. (Qxr)do=- 
sss 

V.(Qxc)dq,= 
0 0 al 

= 
sss 

r x V-Qdro -i- 
sss 

i, x (i,sQ) dr,, 
” 0 

where the last member drops out if Q is a symmetric tensor. As applied to the vector 
f we have Q = To (v) x o - T’ (v) (7.13) 

and referring to (7.10). (7.12). we arrive at the condition 

ss 
r x fd0 + 

sss 
r x kdro = 

sss 
i.x[i,.(Txc6)]dro=0 

0 D 0 

The vector under the integral sign can be represented in the invariant form 

i,x~i,~(T”xu)J=o~To-~fr(To) 
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so that the second condition of (7.11) will result in the requirement 

sss 
[o.T’ (v)--011 (TO)) dro = 0 

=? 
(7.151 

Let us note that the vector (d is determined by the solution of the linear boundary 

value problem (7.7) to the accuracy of an additive constant vector Q)O so that 
o = o’ -+ W, where o’ (0, 0, 0) = 0, say. The vector INO can be subjected to the condi- 

tion 
WO’ SSS (T’ (v) - EIl (T’ (v))] dra = vb, bz--$ 

sss 
[d.T’ - 0’1, (T’)] dr,, 

F B 
in which b is a vector evaluated by the solution of the linear problem (7.7). We. have 
arrived at a system of linear equations for the unknown vector rk 

00, (~,a - 4,) = as, cr, = f sss 
t,,‘dro. c=cll+cz¶+~sa 

for which the coefficients on the left side are yhe mean values of the components of the 
tensor To (v) expressed in terms of the surface forces, but their determination does not 

require the solution o the boundary value problem (7.7). The determinant of this sys- 
tem should be nonzero A = I crq -~rqI#O (7.15) 

and when this condition is not satisfied (for A = 0) the boundary value problem (7.9) 
also cannot have a solution. Taking account of the nonlinearity effect is not achieved 

by inserting the correction w into the solution of the linear problem. 
Seeking the vector w is certainly made difficult by the complexity of the assignment 

(7.10) of the volume and surface forces in the boundary value problem (7.9). Applica- 
tion of the reciprocity theorem permits the determination of the mean values of the 
strains determined by the vector w in terms of these forces ; thus taking account of the 
nonlinearity effect can be satisfied for the calculation of the integral effects, the chan- 

ges in length, volume, etc., when the need to take account of the influence of nonli- 

nearity on the stress distribution is removed to the second stage. The calculation dicta- 
ted by the reciprocity theorem is simplified somewhat because of the special structure 

of the vectors k, f. Application of this theorem results in the relationship 

Gv W,, (4 -I- e’. -em (4 = -$y (SSS k4.rdr, + ssf4rdo) (7.16) 
” 0 

in which e’ is some constant symmetric tensor, t, (w) is the mean value of the strain 
tensor e (w) relative to the volume v , and the 6’, a,,,(w) denote the first invariants 
of the tensors E’, e (w), and e’s_ e, (w) the first invariant of their products ; r = i,o,. 

Referring to (7.13), (7.12), (7.10) we have 1 
SI f.E’.TdO = - SS [o x @*To) -j- n.Y(v)J.e.‘.rdo = 
0 0 

ss 
II. (T” x ta - T).e’.rdo = 

ss 

* 
= n.Q.E’.rdo = 

sss 
(V.Q).c’.rdr, + 

0 

’ jjj Qd%. &-=- & k+c’.rdro + aT.3 &Qdro -7 
D D 

and its substitution into (7.16) results in the desired relationship 
V 

I 

1 - 2v tM,,(u)+e’.. 
ss 

(T”xco-T*)dro =0 
3 

(7.17) 

” 
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Putting successively E’ = E, a’ = i&, e’ = il is + i, il, we arrive at the expressions 

j& %I (WI + Ih WI* = & g{ If*** (v) OI - 111. (v) co2 - tu* (v)] &Q (7.19) 
” 

i 
1 iel2 (Mm = qig 

sss 
v22* (v) - fl1° WY - ha* (v) ot + ha0 (v) @I - zt,**(v)] dT* (7.20) 

0 

It is easy to verify that the integrand in (7.20) is symmetric relative to the subscripts 
f,2 by replacing f,&*, o t by their expressions in terms of derivatives of the displacement 

vector. 

Example. Torsion of a rod. The solution is well known in a linear approxi- 

mation Cl = -a+%# 0, = a+%,. 13 = aq (al, 03 

where IJ is a harmonic function determined by the solution of the Neumann probiem 

The nonzero stresses 
ypf=o. ~lr=ll’Ol--n2ua 

W=JbS($-,). tP<=)10(2+01) 

in the expressions for the components of the linear rotation vector are written as 

Let us verify compliance with the criterion (7.14). We have 

[o *To (v) - oi, (To)] clo = - )ur’ 

since cp is single-valued in S. Here, we used the expression of the integral of a harmo- 
nic function Cp (aI, QI) in a domain which is used fn the problem of the center of stiffness, 

in terms of its contour value and the smoothness 

2 SS Y (01, 42) do - I (nlor + ng2) ds = 
r r 

According to (7.4) and (7.18) we have 

18 (T) = (3). + 2p) (012 + osz + <*Jt), 
‘f 

and upon substitution for [% (w)),,, in (7.19), the quantity o,.cancels, We obtain 
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The integrals herein are expressed in terms of the torsion stiffness of the rod C and the 
polar moment of inertia 1,of the area 

do=I,-CC; I,_,= (al* + a23 do 

The change in rod length turns out to be 
l!l’ 

Al= 4~(l-~2v)W’P -C) v + c (1 -v)] 

and since I, > C (the equality is for a circular rod), it is positive for a material given 
by the specific potential energy (5.7), the rod elongates under torsion. 

8. SUperpOlitiOn of 1 #mall rtrrin upon a finite Itrrln. Three 
states of a medium are examined : the natural (c), the stressed (V”)and the stressed (V) 

produced by communicating a displacement field given by the vector qn 

R==R’+vw (8.1) 

to points of the medium in the state V”, 
The notation used earlier (R, D, A. etc.) is retained for quantities in theV-state, 

their values in P are distinguished by the small zero superscript on the right. The differ- 

ences (“perturbations”), evaluated by keeping the first power of the smallness parameter 
‘1 , are represented as the product of this parameter by a quantity denoted with a dot 
overhead 

k=R’f qk, D=D’+@, A=A*+qA etc. 
Evidently d = w, and the quantities with the dot are differential operators on the vec- 

tor w. They can be difined as derivatives of quantities in the V-state with respect to q 

at q=O Ij= 2!? 
( ) atl ?=n’ 

.i= aA 
( > arl n=o 

etc. 

In conformity with the definition (1.6) 
.X 

G = Vw.VR” + VR’-VW’ 

The principal values C,O of the tensors Gxo and gy(-lM , and their principal directions 

coo, ea” (see (1.9) ) are assumed known. To construct 

ir = h,e,‘* + e,‘i,’ (8.2) 

expressions must be formed for the vectors ;?,, r,‘; in passing, the quantities d, will also 

be found, These vectors are orthogonal to e,O, q*’ since 

e,.e* = I, C,‘.C#’ = 1; e, se,’ = 0 &‘.e,” = 0 (8.3\ 

By the definition of the principal values and principal directions of the tensor 

GX.c, - G,P, = 0, Gxo.E,-C,oP,=d,e,a-i;*.e,o (.?=I, 2,3) (8.4) 

where we also have in the V” volume 
GX0.p 0 a - G,*e,’ =O 

Hence, multiplying (8.4) scalarly by eke, we obtain 

so that 
6, = c,‘.&.e,‘, ’ ekO.e, = 

eko&.e,* 
c.* - CL* (8, k=l, 2, 3; s#&) P-5) 

The projections of &, on axes orthogonal to the trihedron et are defined by the last 
equality in combination with (8.4) ; hence, referring to (8.1) 
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Analogously we obtain 

4 = x’ &.’ G . [e,” 
# .(V w’ *VR’ + VH” l Vw).ek’*Q**] 

and the expression for the tensor A’ is written according to (8.2) as (we discard the 

summation sign) ir e**q” 
= 

c** - C,’ $el;*.(Vw*VR*’ + VR*-Vwf).e,* - 

- e, l ‘-(VR” $-VW + VW’ -VR”).ek’*] 

Now, referring to (2.6). (2.1). (1.10). (1.13) and making substitutions of the form 

ek’*.Vwr .c* =(31*.Gw+** 

we arrive after manipulation at 
*i = e~VrW’ 

1/G,’ + I/q (Q% O’ - e,*ek*‘) 

Furthermore, according to (8.5) and (8.1) we have 

(8.7) 

and now according to (5.3) k 

i, = &~-~~!!+ eko*Vw*e/* (ek*ea” - tj%*p“) + >.A”ei;“.vwSe~** + 2pvw (8.9) 

The equilibrium equations in the volume (in the absence of mass forces) and on the 
surface are written as v. i> = 6 in V; (FdO)‘=n.l%o on o (8.lU) 

In the particular case when the surface force F is a constant pressure p, which remains 
normal to the surface 0, we have by (3.2). (1.2) 

F== - ps, (NO)’ = (jrcfg R3’ n&o 
and from the relationship 

we obtain 

n.i)=-p 
&W 

,o. - R“@.- R” 
aq’ 

1 

n 
, (832) 

8. Con#ervotfon of the prfncipol dfractfonr, In thiscase(Sect.6), 
Eqs. (8.9)-(8.11) simplify considerably. The tensor V w is represented by its partition 
into symmetric and antisymmetric parts 

vw=e-Q=e-Exss (9.1) 

where E is the linear strain tensor, o the linear rotation vector evaluated by means of 

the displacement vector w. Also taking account of (6. l), (6.2), we obtain an equation 
reducible to another Sensenig p] form 
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But it is easy to verify that 

where Eke, = (4’ X e,“)+It;” is the Levi-;:;; symbol. This permits writing (9.2) as 

P+ VF +I’ Exe (9.3) 
0 P 

where T (w) is the linear stress tensor evaluated-‘by means of the vector w 

T(w)=Ekv~+2pa (9.4) 

According to (6. l), (6.2) and (5.8), the tensor D-is represented in the volume c’” as 

D” = (i.sr” - 2~) E T 2~ 2 J/c,“eaoe,* = Lnl*E +- 2~ 2 8,‘e,*e,’ (m= i +&*) 

0 (9.5) 
where 4” are the principal elongations (see (1. IO)). This permits transformation of the 

expressions in (9.2) to 

where a: is a component of the tensor Do Now, defining the diagonal tensor C in the 

the expression for D can be rewritten in the invariant form 
D=T(w)- $Ex(Co) 

Let us note that 

(9.6) 

(9.7) 

+V-W~=Ev s w-tv2wz 
2(i 

, ,v”’ W-22Gxa (Q= G*w) 

and the equilibrium equation (8.10) can be represented as 

V6-- 
I-2v 

2(1-V) Scic(C + E).o=O, ~6-2~XS.f0=0 (9.8) 

where we have introduced the tensor 

B= 2(f ’ --“I,) (C + E) (Y.9) 

Such are the equilibrium equations in displacements for a “semilinear” material when 
the initial stresses therein are subject to conditions of conserving the principal directions 

(Sect. 6). 

10. Homogeneous rtrria CIIC, Under homogeneous strain 
x, = a, (I + &*“I, e,* =i & (i&i) 

where ‘5,’ means the tensors U, C are constant. In this case (9.8) reduces to the “neutral 

equilibrium equations” form of Southwell 133. In these latter the quantities arc are iden- 
tified with the principal stresses a,” in the volume Y” ; this is untrue, the correct relation- 

ships should be written as i -t s,* 
4’ =a,- (1 -f- b,‘)(i + &,‘)(l + h’f 

(s = i, 2, 3) (10.2) 

But since it is assumed that the stress tensor To is connected with the relative elonga- 
tions 6‘0 by means of the relationship (9.5). the Southwell equations are true if the con- 
stants C, therein are expressed in terms of b,’ 

The general solution of (9.8) under homogeneous strain can be represented in terms 
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of the vector G thus 

w = @I*+ &2)VV.G -(WV) V.VJfG -V xl~y(B.‘v”G)] 

Here fir*, D,* are differential operators 

DI* = B,dl* $ B& + B&f = (B.v).v (a.=&) 

(10.3) 

and the vector G is defined by the differential equation 
VeD$G -_ 0 

In particular, under m~tilateral uniform compression b,* = 
Introducing the new vector G* = - &,~a G, we obtain 

w=--&VV~G*+vx(VxG*)=(i-BdVV 

(B = BtBzBI) (10.4) 

(10.5) 

b”, we will have B = &E. 

G*-VV’C* (iO.6) 

where G+is a biharmonic vector. Here, according to (9.5). (9.9) 

1-80=2(1’_v) [I--(lfv) 60 
2(13-W 1 W-1) 

For 60 = 0 we return to the known Boussinesq-Galerkin solution. 

The solution (10.3) can be simplified if the vector G is represented as the sum of the 
vectors G’ and G”expressed in terms of a scalar and a solenoidal vector 

G’ = B-=.Vlp, V2G’ =‘H , V.G’=O. V.R=0 
Then 

V.G’ D,LQt =BfBLBI=O), V-V*G’=V”(D, Vx(Vx(B.V’G’)] =c) 

where the scalar Q, is biharmonic according to (10.5). Its corresponding solution is repre- 
sented as w = (~~2 + L&z) VU’ - (B ~0) V”I’ (10.8) 

The second solution is determined by means of the vector H 

w”=-Vx[Vx(B~H)]=VzB.H-VV.(B.H) (10.9) 

where the vector H is defined by equations for Ei 
Vf4’iI = 6, V.R =o (rcl.10) 

11. A comprerssd rod. A vertical rod is located between two solid, smooth 
slabs ; its lateral surface is not loaded. A &axial state of stress is produced by a down- 

ward vertical shift of the upper slab frza = L) in the amount of L&* while the lower slab 

(Us = o) is fixed. In this state 3;’ = aa* = 0, and according to (9.5) (9.6) 

flI.‘I) 

A parameter cs has been introduced here, where 0 < 3 < f since -i < 4” < 0, 
The three boundary conditions on the remaining unloaded lateral surface are repre- 

sented as n-D’= n-T (w) f 2@ (orn, - WI) is = 0 (fl.2) 

On the rod endfaces 

n.6 = i,.d = is-T (w) - 2pC (cod2 - ojd (11.3) 
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and the horizontal projections of this force and the vertical displacement on the endfaces 
should be taken equal to zero is- D-i, = 0, is- d-i, = 0, WSf-l 

in seeking the equilibrium mode different from the homogeneous state of strain, but real- 
ized by the method described above. 

This results in the conditions (u, r, 1~ are projections of the vector w) 

4tl = 6, 42s = 0, w = 0 for + = 0, a1 = L (11.4) 

which are automatically satisfied if it is assumed that Y* P are proportional to the cosine, 
and w to the sine of the argument (M/L) aa. 

We take @=C$(ar, i&)cos~ 0, 

nw nn 
H1= iY*Y, Hy = - a,g. Ha = 0; ‘i;i’Y = ~5 Y (al, (12) ~%a L as 

in the sofutions (.lO. 8)-(10.10). where the condition that H is a solinoidal vector is satis- 
fied, and the functions v” ((11, a,) and *,, (aI, aa) are determined by the differential 
equations 

( 

nzn2 2 
w-7 

> 
cp (01, 4 = ‘1. 

( 

n*.?* 
- 01*--c L* 

> 
9n (Ql. 02) =o 

(V2'= a,* + 42) 111.5) 
Expressions of the displacements (10.8), (19.9) are written as 

and the volume expansion 6 evaluated therewith is represented by the equality 

rAIz 

( 

n?P 1 
6 ==aa --p-(1-q V*f--ii_jqps~a, 

The boundary conditions (11.3) reduce to 

s 
n,~vG~1--G)~ F,“-- i 

&lr \ 
L”,cp, -I- & 

, 

[ i 

n*.x* 
1 at VI-7 - 

- -$&&I -'~;,ld,"i~(~,~~+~~,~)=o 

) 

Values of the parameter o in the interval (0.1) for which the homogeneous boundary 
value problem (11.5), (11.7) has a nontrivial solution, will be bi~cation values. Besides 
the original equilibrium mode (w = 0) , nearby modes also exist for such d . 

12. Rod of circular croo 8sctlon [%I]. Solutions of(11.5) are sought in 
the form ‘pn (0,. aI) = R (z) cos m0. f,, (01, oz) = S (rmsin m6 (z = Nr/L) 

where R (z), S(rv5 are expressed in terms of Bessel functions, and the variable 6 is 
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(13 2) 

(13.3) 

The condition for the existence of non~ivia1 solutions of this homogeneous boundary 
value problem is determined by the bifurcation values of the pressure w 

The finite solution at the poles of the sphere is sought in the form 

WR = an (R) P, (cos 6). to8 = bn (R) 
dPn (cos d) 

dcos8 
sin 8 

and utilizing the known properties of Legendre polynomials, we obtain 

‘t7*w= u;+z&p+i)~ t I P, (eos 6) = cp, (R) P, (cos 6) 

201, = b,,’ f sin$=X,(R) 
dP,, (cos 6) 

dcos6 sin6 (13.4) 

The variables R, 6 are separated in the equilibrium equations (13. l), whereupon a 

system of linear differential equations results 

(A + 211) R%n’ - Rg tR) r~ (n + 1) x,, (R) = 0 

tA + Pcl) Tn WI - IRg (R) %n (WI’ = 0 

whose general solution is written thus 

qn (R) = (R + i) /4,‘R”- pi i 
7. i 2p 

( 

B 
%,, tR) = - f,R” +$- ir (R) ) 

(13.5) 

Here, replacing q,,, xn by their expressions in (13.4). we find after still another inte- 

gration 
an (R) = -. ,,c,W-‘i- (Ii+ 1) g ) b, (ft) = C,‘R”-‘+ gz (13.6) 

where R 

R 
1 

- 4,+=4+2n+j (cp, + q,) R”“‘dR 
I 

(i3.7) 

The variables R and 0 are also separated in the linear boundary conditions (13.2), 

(13.3) ; substituting the values found for a,,, b, therein, we obtain a linear homogeneous 
system of four equations for the constants A,,. .B,, C,,, 11,. Bifurcation values of ir, are 
determined by the condition that its determinant vanishes. 

The problem of bifurcation of the axisymmetric equilibrium mode of a hollow circu- 
lar cylinder compressed uniformly by distributed external pressure [2] is considered ana- 
logously* 
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(Moscow) 
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The problem of stress concentration around curved holes without angular points, and the 
problem of an oscillating loading applied to the boundary of a half-plane are considered. 

The purpose is to investigate those properties of their solutions which result form small- 
ness of the parameter I. The system is reduced to one equation, and an asymptotic me- 

thod in the version of Vishik and Liusternik Cl] is applied to solve it. For the concentra- 
tion problem it is shown that if the solution by customary theory is known, then the solu- 

tion by couple-saess theory can easily be constructed in a first approximation, and that 
couple-stress theory yields only an insignificant refinement. In the half-plane problem 

it is shown that the correction to the corresponding classical problem will be essential 

only in the case of rapid oscillaticn of the boundary conditions, i.e. when the state of 
stress being studied is of edge character. Ano:her version of the asymptotic analysis of 

nonclassical problems of elasticity theoiy is given for fibrous media in [2]. 

1. In a Cartesian coordinate system the pl.ane strain relationship in couple-stress ela- 

sticity theory, as presented in [S], are: 

1 LV 
e 

X!/ =~(‘ry+fJ’ x,=&r,* ‘Jr, z -J- 
4CP p,r 

au .r7V 
e ==x, x ey = dJ’ exy _$($+$) 

@I4 xx=;(g-- > 
1 

i 

rFV ~ml 

dr d!/ ’ .x,-T a--- 
> 

Here ax, q,, T=“, T,,~ and pX, ~~ are components of the force and moment stress ten- 
sors e,, eU, eXy and ‘XX, %v are components of the strain and bending-torsio-r tensors ; u, 
u the components of the displacement vector; E the Young’s modulus; G the shear 
modulus ; v the Poisson coefficient ; I the characteristic length of the material which 

we shall henceforth consider small as compared with the minimum radius of curvature 
of the hole. 

Utilizing (1. l), we obtain two equations in the displacements 


